Bibliothèque Tangente. N° 20. Jeux mathématiques.
Casse-tête ou récréation ?
Auteur : Cohen Gilles. Dir.
Résumé
Toujours étonnants, souvent pervers, les jeux mathématiques sont des défis que se lancent les hommes depuis la nuit des temps. D’ailleurs, toute chose étant prétexte au jeu, on ne voit guère comment les mathématiques y auraient échappé. N’importe quelle situation peut constituer le point de départ d’une énigme, d’un problème, d’un puzzle : des grains de blé à dénombrer, la marche zigzagante des cavaliers de l’échiquier, les quarante soldats défendant une ville fortifiée, ou encore les sept ponts d’une cité traversée par une rivière… Esprit logique et esprit ludique se rejoignent pour la plus grande gloire de l’imagination. Les géniaux inventeurs se succèdent pour offrir à leurs semblables ce que les uns qualifieront de casse-tête, et les autres, d’agréables récréations.
Sommaire :
* Les grands problèmes historiques
– Michel Criton et Gilles Cohen : Trente siècles de jeux mathématiques
– Pierre Berloquin : Futiles mais fascinants : les carrés magiques
– Pierre Berloquin : Bachet de Méziriac
– André Calame et Michel Criton : Les problèmes de l’échiquier
– Elisabeth Busser : Ernest Dudeney et Sam Loyd
– Michel Criton : Echecs et maths
– Alain Zalmanski : Martin Gardner
– Pierre-Henri Ladame : Jouer avec le feu
* Enigmes et logique
– Gérard Cohen-Zardi : Comment résoudre les problèmes de logique
– Alain Zalmanski : Raymond Smullyan
– Hervé Lehning : Au-delà des jeux : les paradoxes
– Alain Zalmanski : Ceci n’est pas un titre
– Bernard Myers : Problèmes de logique
– Octavia Gaël : Douglas Hofstadter
* Jeux de chiffres et de lettres
– Alain Zalmanski : Jeux de chiffres, jeux de lettres, jeux de mots
– Alain Zalmanski : Lewis Carroll
– Pierre-Henri Ladame et Michel Criton : Des lettres aux chiffres : les cryptarithmes
– Marie-José Pestel : Codes, chiffres, messages secrets, à vous de jouer
* Les jeux dans la théorie des jeux
– Gilles Cohen : Hasard et décision
– Gilles Cohen : Les jeux de réflexion pure à information complète
– Michel Criton : Trois taquins
– Gilles Cohen : Quelques stratégies gagnantes pour les jeux de Nim
– Hervé Lehning : Le choix d’une stratégie
– Elisabeth Busser : John Conway
– Michel Criton : Problèmes de jeux de Nim
– Vincent Mille : Nombres croisés
* Surprises arithmétiques
– Gilles Cohen : Méthodes numériques pour jeux mathématiques
– Gilles Cohen : Devine mon nombre
– Alain Zalmanski : Léonard de Pise dit Fibonacci
– Michel Criton : Fantaisies numériques
– Michel Criton : Algorithmes numériques
– Hervé Lehning : Stratégie pour retrouver la boule
– Michel Criton : Dattatreya Kaprekar
– Michel Criton : Problèmes numériques
– Alain Zalmanski : Edouard Lucas
* Puzzles géométriques
– Michel Criton : La géométrie de position
– Michel Criton : Des points et des lignes
– Michel Criton : Figures coupables
– Pierre-Henri Ladame : Jouer avec des allumettes
– Michel Criton : Jouer avec des polyminos
– Alain Zalmanski : Leonhard Euler
– Pierre-Henri Ladame : Au rythme des cryptarithmes
Notes
Cet ouvrage est une version augmentée du Tangente Hors-série n° 20 – Jeux mathématiques.
Données de publication
Éditeur Editions POLE Paris , 2004 Collection Bibliothèque Tangente Num. 20 Format 17 cm x 24 cm, 160 p. Index Bibliogr. pag. mult.
ISBN 2-84884-024-2 EAN 9782848840246 ISSN 2263-4908
Public visé élève ou étudiant, enseignant, tout public Niveau 1re, 2de, licence, lycée, terminale Âge 15, 16, 17, 18, 19
Type monographie, polycopié, vulgarisation, popularisation Langue français Support papier
Classification
Mots-clés
- activité de logique
- algorithme d'Euclide
- algorithme de Kaprekar
- algorithme de Prabekhar
- anagramme
- autoréférence
- axiome de Peano
- Bachet Claude
- biographie
- boeufs d'Archimède
- carré magique
- carré magique à enceintes
- Carroll Lewis
- chaîne eulérienne
- chemin dans un graphe
- chiffre de César
- chiffrement
- code RSA
- congruence modulo n
- Conway John Horton
- cryptarithme
- cycle eulérien
- découpage géométrique
- division des figures planes
- Dudeney Henry
- énigme logique
- équilibre de Nash
- Euler Leonhard
- évolution d'une population
- Fibonacci Leonardo
- figures superposables
- Gardner Martin
- géométrie dans le plan
- hétérogramme
- histoire de la cryptographie
- histoire de la théorie des nombres
- histoire des mathématiques
- histoire des mathématiques récréatives
- Hofstadter Douglas
- jeu à information complète
- jeu à stratégie gagnante
- jeu d'échecs
- jeu de grille
- jeu de la vie
- jeu de Nim
- jeu de plateau
- jeu de réflexion
- jeu de taquin
- jeu mathématique
- Kaprekar Dattatreya Ramachandra
- langage et logique
- lipogramme
- littérature sous contrainte
- logique booléenne
- logique et raisonnement
- Loyd Sam
- Lucas Edouard
- mathématiques au 19e siècle
- mathématiques au 20e siècle
- mathématiques en Angleterre
- mathématiques et littérature
- mathématiques et société
- mathématiques récréatives
- message chiffré
- mise en équation
- nombre de Kaprekar
- nombres croisés
- numération décimale
- ordre d'un graphe
- palindrome
- paradoxe
- paradoxe de Richard
- paradoxe de Russell
- paradoxe de Saint-Pétersbourg
- paradoxe visuel
- paradoxes de Zénon
- pavage d'un rectangle
- polymino
- ponts de Königsberg
- problème d'alignement
- problème d'autoréférence
- problème de Bachet de Méziriac
- problème de dénombrement
- problème de Flavius
- problème de Hasse
- problème de l'échiquier de Sissa
- problème de pesées
- problème des 36 officiers
- problème des tours de Hanoï
- problème du cavalier
- problème du Chevalier de Méré
- problème du loup de la chèvre et du chou
- problème historique
- promenade aléatoire
- puzzle de Dudeney
- puzzle de Lewis Carroll
- puzzle géométrique
- raisonnement par récurrence
- recherche d'invariants
- récréation mathématique
- Smullyan Raymond
- stratégie gagnante
- stratégie perdante
- suite de Fibonacci
- théorie des graphes
- théorie des jeux
- tour de cartes
- tour de magie
- vulgarisation des mathématiques