Mathématice. N° 63. Construire un pavage dynamique par programmation.
Auteur : Debrabant Patrice
Résumé
Dans cet article, l'auteur présente de différentes façons de construire un pavage dynamique (par rapport à trois points) du plan par des parallélogrammes. Les méthodes sont généralisables à des pavages plus compliqués. Elles permettent également de présenter différents paradigmes de programmation en géométrie dynamique. L'auteur a construit des pavages "périodiques" (invariants par un groupe bidimensionnel de translations), et il a posé les tuiles ligne par ligne. Pour aller plus loin il s'intéresse aux : aux méthodes pour poser les tuiles selon une spirale, à des pavages particuliers (variante du pavage de Diane, un pavage de l'Alhambra, le pavage dit "des chinois") et aux 17 groupes de pavages.
Notes
Il est possible de lire et répondre à cet article : http://revue.sesamath.net/spip.php?article1116
MathémaTICE est une revue collaborative libre portant sur l'utilisation des TICE en classe de Mathématiques.
Une liste de thèmes est proposée en page d'accueil. A chaque requête thématique, MathémaTICE propose un dossier virtuel d'articles et de brèves correspondant à ce thème.
Cet article est en libre accès sur le site MathémaTICE
Données de publication
Éditeur Sésamath Erôme , 2019
Matériel utilisé DGPad, CaRMetal
Public visé enseignant, formateur
Type article de périodique ou revue Langue français Support internet
Classification
